Skip to Content
Authors Du B, Fu C, Kent KC, Bush H, Schulick AH, Kreiger K, Collins T, McCaffrey TA
Author Profile(s)
Journal J. Biol. Chem. Volume: 275 Issue: 50 Pages: 39039-47
Publish Date 2000 Dec 15
PubMed ID 10982796

Atherosclerotic lesions may progress due to a “failure to die” by vascular repair cells. Egr-1, a zinc finger transcription factor, is elevated more than 5-fold in human carotid lesions relative to the adjacent tunica media. Lesion cells in vitro also express 2-3-fold higher Egr-1 mRNA and protein levels but express much lower levels of the transforming growth factor-beta (TGF-beta) Type II receptor (TbetaR-2) and are functionally resistant to the antiproliferative effects of TGF-beta. Lesion cells fail to express a TbetaR-2 promoter/chloramphenicol acetyltransferase (CAT) construct but overexpress an Egr-1-inducible platelet-derived growth factor-A promoter/CAT construct. Transfection of Egr-1 cDNA represses TbetaR-2/CAT constructs but induces PDGF-A/CAT. Egr-1 transfection reduces the levels of TbetaR-2 and confers resistance to the antiproliferative effect of TGF-beta1. Egr-1 can interact directly with both the -143 Sp1 site and the positive regulatory element 2 (PRE2) (ERT/ets) region of the TbetaR-2 promoter. Thus, although activating a family of stress-responsive genes, Egr-1 also transcriptionally represses one of the major inhibitory pathways that restrains vascular repair. Copyright © 2018 The Board of Regents of the University of Wisconsin System