Skip to Content
Authors Bell JR, Penniston KL, Nakada SY
Author Profile(s)
Journal J. Endourol. Volume: 31 Issue: 10 Pages: 1067-1072
Publish Date 2017 Oct
PubMed ID 28728505

There are limited data regarding optimal laser and energy settings during stone fragmentation. We assessed effects on fragmentation using a variety of energy and frequency settings with two laser systems.Artificial stones were created using BegoStone. A clear polyvinylchloride (PVC) tube with an inner diameter of 13 mm was closed at one end with a removable plug to create the in vitro ureteral and caliceal environments. The Lumenis Pulse 120H and the Cook Rhapsody H-30 holmium lasers were studied in the caliceal and ureteral models. A single urologist fragmented each stone to <2 mm. The caliceal studies assessed the time to fragmentation (n = 56). The ureteral studies measured the retropulsion distance of each stone phantom after 5 minutes of laser treatment time using different pulse width settings (n = 15).Complete treatment of the stone with the 120H required 10.9 minutes at ≥1 J vs 26.9 minutes at <1 J (p < 0.001). The H-30 showed similar results with treatment times of 11.2 minutes at ≥1 J vs 22.8 minutes at <1 J (p < 0.001). There was no significant difference in treatment time when comparing the two lasers using settings of 0.8 J × 8 Hz and 1.5 J × 10 Hz (25.5 minutes vs 24.8 minutes, p = 0.861; and 13.2 minutes vs 9.5 minutes, p = 0.061; respectively). Retropulsion distances using the 120H were 13.9 cm using long pulse, 25.2 cm using medium pulse, and 56.6 cm using short pulse. Retropulsion distances using the H-30 laser were 7 cm using long pulse and 14.5 cm using short pulse, which differed from the 120H (p < 0.001).Laser fragmentation was faster with both lasers when energy settings of ≥1 J were used. Treatment times using the 120H and the H-30 lasers were equivalent. Retropulsion distances were less with both lasers when longer pulse widths were used. The H-30 resulted in less stone retropulsion compared with the 120H. Copyright © 2017 The Board of Regents of the University of Wisconsin System